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Abstract

A continuous adjoint approach for obtaining sensitivity derivatives on unstructured grids is developed and analyzed. The
derivation of the costate equations is presented, and a second-order accurate discretization method is described. The rela-
tionship between the continuous formulation and a discrete formulation is explored for inviscid, as well as for viscous flow.
Several limitations in a strict adherence to the continuous approach are uncovered, and an approach that circumvents these
difficulties is presented. The issue of grid sensitivities, which do not arise naturally in the continuous formulation, is investi-
gated and is observed to be of importance when dealing with geometric singularities. A method is described for modifying
inviscid and viscous meshes during the design cycle to accommodate changes in the surface shape. The accuracy of the sen-
sitivity derivatives is established by comparing with finite-difference gradients and several design examples are presented.

Introduction formed first, followed by the discretization. Note that the operations of

Aerodynamic design optimization has been an important area of rdlifferentiation and discretization do not commute in general. Hence, de-
search for many years. Although some of the early work in this area hH¥atives obtained by using the two approaches may not be identical and
been limited in applicability because of a lack of computational toolsould differ according to the level of truncation error. A comparison of
advances in computational algorithms and computer hardware have f8€S€ two approaches for a quasi-one-dimensional problem is given in
cently fostered intense efforts aimed at aerodynamic and multidisciRef- 37 ) ) ) . .
plinary optimization. Among the methods currently used are gradient- Much of the pioneering theoretical work in adjoint methodology has
based optimizers in which a specified objective function is minimized?€€n presented in Refs. 19, 25, 29, 30, and 31. Although optimality con-
The gradients of the objective function with respect to the design varflitions for aerodynamic applications have been derived from a continu-
ables are used to update the design variables in order to systematicQ¥f aPproach in Refs. 3 and 6, the computer implementations have gen-
reduce the cost function to arrive at a local minimum. An important steprally followed the discrete approach. One of the advantages of the
in this process is the determination of these gradients, which are also FisCréte adjoint approach is that, because the equations are discretely ad-
ferred to as sensitivity derivatives. joint to_the flow equations, the derivatives obtained are consistent with

Several techniques have been investigated for evaluating the sensitifjpite-difference gradients independent of the mesh size. A disadvantage
ties for aerodynamic applications. A description of these techniques c&h this approach is that it requires the transpose of the matrix that repre-
be found in Refs. 5, 15, 16, and in the references contained therein. 8fNts the linearization of the discrete residual with respect to the flow
particular interest in the present context are adjoint methods. In the¥@riables. For higher order accurate schemes, where the residual has a
methods, the objective function is augmented with the flow equatior€®Mplex dependence on grid points, an exact implementation of this ap-
enforced as constraints through the use of Lagrange multipliers. TheBEach may be difficult to realize. For this reason, previous implementa-
methods are particularly suited to aerodynamic design optimization fd{ons of the discrete adjoint approach, such as those in Refs. 6, 7, 26, and
which the number of design variables is large in relation to the numb@lj,' havg used a dlscretlzatlpn of.the. adjoint equations thfalt is consistent
of aerodynamic constraints or objective functions. This is because tifth a first-order accurate discretization of the flow equations. Second-
derivatives with respect to all design variables for each objective fun@der accurate implementations of the discrete adjoint approach have
tion or aerodynamic constraint, can be obtained with a computational é7€€n carried out on structured grids in Refs. 10 and 23. On unstructured
fort roughly equivalent to that for a single solution of the flow equationsd"ids, a discrete adjoint approach for the Euler equations that is consis-

Adjoint methods can generally be divided into discrete and contind€nt with a second-order discretization of the flow equations has recently
ous adjoint methods. In the discrete adjoint approach, the augment@8en implementetf -
cost function is discretized before variations are taken. For the continu- !N Ref. 19, Jameson developed a control theory framework for optimi-

ous adjoint formulation, the process is reversed: variations are pef@tion using both the full potential and Euler equations for compressible
flows. Computational results based on this approach were first presented

"Senior Research Scientist, Aerodynamic and Acoustic Methodsn Ref. 20. This approach has been further developed and implemented
Branch, Fluid Mechanics and Acoustics Division, Senior Memberfor both two- and three-dimensional applicati6h& In these refer-

AlAA. ences, the continuous adjoint approach is pursued in both the derivation

*Senior Staff Scientist, Institute for Computer Applications in Scienceand the implementation on structured grids. In Refs. 32 and 33, the tech-

and Engineering, Senior Member AIAA. nigue has been applied on complex configurations with a multiblock al-
gorithm.
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ner. Cabuk and Modi and Cabuk et df have also used an adjoint for- cost functions such as drag minimization are composed of terms that in-
mulation to design an optimal diffuser shape using the incompressibl®lve products of both geometric and nongeometric quantities:
Navier-Stokes equations.

In this paper, the problem of aerodynamic optimization on unstruc- _
tured grids via a continuous adjoint approach is developed and analyzed 1(Q. D) = fr (9(Q(D))k(D))ds )
for inviscid and viscous flows. A detailed discretization of the adjoint

equations is presented, and the relationship with the discrete adjoint Fare, g is an arbitrary function of the flow variables, akdtepresents

proach is investigated. The accuracy of the resulting derivatives is aSitherk, ork, . For cost functions such as Eq. (3b)assumes a value
sessed by comparison with finite-difference gradients. In addition, gy unity. A general form for the first variation can be written as
mesh movement scheme is presented for restructuring the grid in re-

sponse to changes in the surface geometry. The resulting methodology is ,
then used to design several airfoils for inviscid compressible flow, as 8l(Q,D) = _f (GnewKnew)ds —_f (Qo1gKora)ds (5)
well as for incompressible laminar flow. r r

Adjoint Variable Approach for Sensitivity Derivatives wherel and" represent the old and the new surface of the geometry,

Considering first steady inviscid compressible flow, the governin es]E)ectlveIIEy, almd the Ska;]SC”m_m ?'E*N c(ij%note q;arflttltles ((j)_n these
equations are given by: urfaces. Evaluation of these integrals is addressed after a discussion on

obtaining variations of;

P P The method for obtaining the variations of the volume integral in Eq.
—F(Q)+5-G(Q) =0 1) (2) involving the residuaR  follows closely that of Pironnéalenot-

0x ay ing this volume integral as

where Q is the set of dependent variables for the Euler equations
(p, pu, pv, E), F and G represent the flux vectors of mass, momen- 1(Q,D,¥) = ![(Ll-‘, R)dQ (6)
tum, and energy, arxl and are Cartesian coordinates.
In the adjoint approach for design optimization, a cost function is de-
fined and augmented with the flow equations as constraints: the variation that properly accounts for volume changes, as well as for
changes in the flow field, is given by

1(Q,D,W) = 1,(Q,D) +] (¥,R)dQ = 1,(Q,D) +1x(Q,D,¥) (2) . .
J. Sy = —J;QT%AT%J + BTg—;“ Gioo + 1[QT(ATkx +BTk)Wds  (7)
whereR represents the steady-state flow equati@nss the vector of
design variables, and  are the Lagrange multipliers (also referred to MRereAT
the costate or adjoint variables). In Eq. (R),Q, D) represents the coggs and th
that is to be minimized, anq (W, R)dQ is the inner product of the
costate variables with the re€idual. Examples of suitable cost functio
include drag minimization and matching a specified pressure distrib
tion, for which1,(Q, D) can be written as

andB’ are the transposes of the inviscid flux Jacobian matri-

e surface integral is over the solid walls as well as the far-field.
In deriving Eq. (7), it is tacitly assumed that the fluxes and the costate

Variables are differentiable; similar assumptions have been discussed

Carlier regarding the cost function. The variation of the augmented cost
function in Eq. (2) is_formed by combining Eq. (7) with the variations in
1.(Q, D) . BecauseQ is arbitrary, the volume integrals present in the

1.(Q,D) = ji (cpkxcosa —cpkysina)ds  Drag minimization (3a) variation of the augmented cost function can be eliminated by requiring
r thatW satisfy the following adjoint (costate) equation:

1
1.(Q, D)= Efr(cp—cpEbzds Specified pressure distribution (3b) —ATg—iJ—BTg—:J =

0 ®)
wherec, is the pressure coefficiekt, dqd  arexandy components The surface integral in Eq. (7) is used together with the variations in
of a unit normal to the surface, and is the angle of attack. The cost the cost functionl(Q, D) to determine both the boundary conditions
function can also be field integrals, such as viscous dissipation, althougRd the sensitivity derivatives. The boundary conditiongHoare cho-
these are not considered in this paper. It is assumed that the cost fufén to eliminate the terms that multigy on the boundaries. The sur-
tions are differentiable although this assumption may not be valid fdiace integral can be rewritten as
flows with shock waves or other singularities. A smoothing procedure as
suggested in Refs. 19 and 22 may be employed to place the derivation on
firmer theoretical ground. However, in numerical implementations, dis-
sipation typically smears discontinuities over a finite humber of mesh
points, thus mitigating the effects of non-differentiability. Therefore, T T T ! ) .
smoothing of the cost function is not performed in this paper with no ag/hereA” = A 'k, + Bk, . In the far field, this term can be rewritten by
parent consequences. This step is consistent with discrete approac[’)lé@g a locally one-dimensional characteristic decomposition at the
where the lack of differentiability is also not explicitly taken into ac-Poundary to yield
count.

_The derivation of the adjc_nin_t equations plose_ly follows classical tech_— I(KTLP' é)dl‘ — 1[(14)' T/_\\7V)dr (10)
niques from calculus of variations, as outlined in Ref. 36. In shape opti-
mization, calculation of the first variation of functionals, such as those in
Egs. (3a) and (3b), requires that the integral on the modified surface Rﬁﬁeref\l
expressed in terms of quantities on the original surface. For examplgFe the ¢

IQT(ATKX+BTky)wdF = I(AWJ, Q)dr (9)

= 77Q ,T™ is the matrix of left eigenvectors @&f, andA
orresponding eigenvalues. Boundary conditions for the costate
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variables in the far field are obtained using characteristic-type boundary 0]
conditions on the field variables, where the propagation of information is (1-y)u T
based on the signs of the eigenvalues. For shape optimization, variations - (k,W, +k,Ws)| ; _\» | +K 99 09 99 99 | =0 (15)
in W associated with free-stream quantities are zero, so that the corre- (1=y)v 0Q,'0Q, 0Q5'0Q,

sponding costate variables on the boundary can be extrapolated from the (y-1)

interior of the domain. The other costate variables on the boundary are

obtained by requiring the remaining terms in Eq. (10) to vanish. WheNote that the column vector that multipli¢k, @, + k yWs) corresponds
Mach number or angle of attack are design variables, variatiows in to the derivatives of pressure with respect to the dependent variables. In
reflect the appropriate changes in free-stream conditions and are usecbider to obtain a unique boundary condition fde Y, +k W) , the

obtaining the derivatives with respect to these variables. second column must be a scalar multiple of the first. Therefprean
On solid walls, the boundary condition that there is no flow normal tanly be a function of pressuré(p) , which yields the following bound-
the new surface is written as ary condition:
0Q,. K W, +k +kdh()—0 (16)
%g+a_x+_y+Q2%k +k) (11) W + kyPs dp p) =
+ EQ +— 3% +— y +Q3%k + k Thus, cost functions such as specification of a velocity distribution or

minimization of surface entropy are inadmissible, except in special cases
. . . where they can be expressed solely in terms of pressure.
Using Eq. (11), the surface integral in Eq. (9) can be expressed as As an example of an allowable cost function, consider the drag coeffi-
cient given by

I(KTw. Q)ds = I(bl[(kxwz +ky W)@ + (12a) ,

~ = —21[533 - 1gkxcosu + k,sina)ds a7

Qa[ (KW + kyW3) (1 —y)u] + yM,°f Peo

Qal (kW + kyWa) (1—y)v] + The appropriate boundary condition for this case is given by

A 2 .

Qal (K Wz + kyW3)(y —1)] + R(Wy + Pou + Wav +Y,H))ds kaIJz+kyLIJ3+\M—2(kaOSU + ksina) = 0 (18)
whereH s the total enthalpy and Surface Parameterization

In shape design, the best representation of the surface for design prob-
lems remains an open issue. In the current study, the geometries are

R = —(Qkx + Qsky) (12b)  modeled with B splines, which offer great flexibility in the definition of
30 30 30 0Q the surfaces. By varying the polynomial degree and the number of con-
B(x 24 35; B(x 24 3%'/ trol points, a wide range in the number of design variables and surface
ox  Yox % yay fidelity can be obtained. On one hand, the design variables can be made

to correspond to the individual grid points on the surface by choosing a
In order to compute the variation in Eqg. (5), the integrand for the firsinear polynomial and an appropriate number of control points. Con-

integral is expanded as follows: versely, a single polynomial curve of degree(known as a Bezier
curve) can be used to describe the geometry by choosing the number of
OnevKnew = (O + GX + 9y)7 +0) (Knew* Qnew) (13) control points to ben + 1. In addition, through the knot sequence asso-

ciated with the spline, sharp breaks in the surface such as those that

In Eq. (13), the derivativeg, andg, account for spatial changes aid occur in cove regions and blunt trailing edges can still be represented in

reflects the variation due to the %/act that the solution of the governlna single cur:/e h fth f
equations has changed in response to the changing surface. Note that f(JP a B-spline representation, ltée x- and y-coordinates of the surfaces
structured grids, which employ a mapping to a fixed computational dé¥'® written in a paramedtric form-as
main, these spatial derivatives do not arise because the variations in the
generalized coordinates are zero. However, variations in the mapping
function need to be considered which naturally provides a mechanism to x(t) = z XiN; (1) (19a)
account for grid sensitivities in a continuous framewsrk. i=

The boundary conditions for the costate variables are derived by com-
bining the boundary terms from the variation in the cost function with n+1
those from Eq. (12a) and then elirginating terms that involve variations y(t) = z YiN; (1) (19b)
in Q. Becauseg isafunction@ g, isgivenhby .

n+1

4 where(x, y) are the Cartesian coordinates of the surfiicg,is the B-
zi (14) spline basis function of ordde, (X;, Y;) are the coordinates of the B-
= 9Q; spline control polygon, and + 1 is the total number of control points.
. Notice that the surface description with Egs. (19a) and (19b) is still con-
The boundary terms that multipy  are eliminated by requiring that tinuous.
In Fig. 1, a point on the old surface is assumed to move to the new
surface while remaining at a fixed valuetofConsequently, variations



in the basis functions need not be considered. In addition, generality is

- y
maintained for the surface geometry as variations are not restricted to kg = Jz—z (25a)
being strictly normal to the existing surface. Xty
_ =X
ky = —=— (25b)
NXT+y
—eopt
new Surfac/eO/ t = constant the variations in the surface normals can be derived as
/ t n+1
é s (A-k 2)' - dN;
26a)
/ Kx [2.22 dt dt (
old surface X“+y .Z Xy lz
Figure 1. Movement of point on surface. (1-k) k2) " . (26b)

...y _ mlz dt | k X X Z dt

For small variations, an incremental length on the new surface can be

written as . " . .
By using Egs. (13), and (20)—(26b), variations of integrals that involve
ds' = (1+A)ds (20) gk, can be written as
h n+1
where 6a'gkyds% = Iékyds 1[% dt N k+x IN (27a)
. . i=1
Z+y 1[%6 N, et
i=1
and - I . . . .
Similarly, variations of integrals involvingk,  are given by
n+1
~ dN
Co= § Xk (22a) .

(27b)

IZl & éa'gkxds%: I@kxds+n l I@agr\n, (ot
2 I%GQN k+gat'k%’"

n+1
- v, dNi,k
C, = XY. B&
i=1

Here, X; andY; are variations in the position of the B-spline control For cost functions such as (3b) that only involve flow quantities, a simi-
points, andx and/ are derivatives with respect to Because a given lar procedure yields

point on both the old and new surfaces is at a fixed value the coor-
dinates on the new surface can be written as

(22b)

dN
5 qd ds+ § V[N _gy NG RE R re
n+1 n+1 a—g % 1[9 z I Ikay X +y2dt O y (270)
Id, &
Xnew = zxinewNi Kk = z (X7 + XN (23a) _gx_dND
, ’ .2 -2
i=1 i=1 zXID\I,aX Z +yd . X~ +y dt
n+1 n+1
Yoew = z YN, = z (Y2 + \?i)Ni X (23b) The terms in Egs. (27a), (27b), and (27c) involvih@re eliminated
&= ' & ' by the boundary conditions along with the terms involvipgin Eq.
h h (12a) as discussed earlier. The sensitivity derivatives are obtained by
- ; P combining the remaining terms in Eq. (27a), (27b), or (27c) with the last
Therefore, the variation of a point on the surface is given by term in Eq. (12a). For example, using Eqgs. (24a)—(26b) to compute the
nel variations in the coordinates and metric terms, the sensitivity derivatives
- _ ~ of the drag coefficient with respect to each B-spline control point are
X = ZXiNiyk (243)  given by
i=1
0 .0 6 dN;
n+1 % = KN, ~ G b (28a)
y = (24b)  OXi yM

y YiN,
i; 1INk

Since the components of the surface normal can be expressed as

dN; aQ aQ
1%23& k_ X6x2 yaxsg\l,k%wl+u¢’2+vw3+HW4)dt



where

ocy _ a91 ng adN;
- —_ Kt 28b
i yM = Orgp (28b)
0
dN; an 6Q3
W[D Qg Xay k@ %\Ii'k%wl Uz r Vs P 0 5”’25 0 9%, aLIJ3
T = Relox 0" aylay (32b)

where g, = (p/p,—1)cosa and g, = (p/p,—1)sina . For cost malpz awsD d allJ3
functions such as lift or moment coefficients, a similar procedure is fol- Xy %

lowed. When Mach number and angle of attack are considered as design
variables, variations from surface integrals in the far field also contribute

to the sensitivity derivatives. For purposes of illustration, the boundary conditions for the adjoint

system are derived with the assumption that the cost function is the drag

Navier-Stokes coefficient:

In this section, the adjoint equations with the associated boundary
conditions and the expressions for the sensitivity derivatives are derived
for viscous flows. Only incompressible laminar viscous flows are con-
sidered in this paper to make the analysis more transparent. 2 P

The governing equations, with the artificial compressibility parameter ——“%kx_u
B, are given by Re

Cq = ﬂcpkxcosa + Gk, sina (33)

[@u av%cosa

0 0 _
—XBu+a—Bv =0

0 _ Ko auD 0 Qu 6V|:|]]
axU P+ 5u(U) = R PaxT aylay T axil

09 09,2 - Mo @u, ovp, 0 ov[m
ax(UW 5y (v P) = Rergxiay T axD ay%GyDD

The cost function is augmented as in Eq. (2) with the flow equations
as constraints through the Lagrange multipliravith Q = {p, u
is split into the contributions from the inviscid and
, respectively. These can be derived as

The variation inlg

the viscous termi;FQV anigysc

6I|nv — _lQ %Ta_LP.FBTa_qJEjQ +IQ (A K, +B k )LIJdS (30)

and

visc _ aq"zD d G)wz al'ps
_5|R = l < 0% ayiy %ﬂg

alPSD 6@4’2 alP3
{ Ot axtsy ax @

ILP k Ziu +k DTu +i\75]ds

I [k 2—v+k 0o u+aiv ]ds

aw ¥

2 2 3

+I kx[ Vax ]ds
oW wz L0V,

+Iky[2v— — +U ax ]d

(7]

%’é%ky kx%—u gv%lna]ds

Note that the expression for drag retains the components from the vis-

(29) cous stress tensor. It will be seen that this is a requirement for obtaining
boundary conditions for the adjoint equations. Using Egs. (27a) and
(27Db), the variation in the drag coefficient is given by

ow 3G, .  9G, oN,
3¢, = ach ZXIE‘\(N.k ! XNi,k—z—a"kGZEpt (34a)

0x
ZYID{N.k

N; kgsz ?;ji'kel%ﬂ
IuBBk W+ %kxgjz

Dawz L~ m/mdt
+I\783kylvl

T

oW, @wz W [
%ky ] Seacsna IO + g2t

where
(31)
acho" = 1[%b(kxcosu + ksina) (34b)
%kx Ly +k, [0 u+—v%cosu
~ . D .2 .2
%k v+k u+&v%sma[p/x +y°dt
and
_ Hou U @u ov
G; = 2pcosu — 4Rea cosa — ZReQT aXBsmu (34c)
_ nov M u, ov
G, = 2pS|na—4Reaysma 2ReW ax%:OSd (34d)

Combining the field integrals in Egs. (30) and (31) and setting the inte-

grands to zero yields the following adjoint system:

o _toW
A By =T

Expressing the velocities on the new surface in a Taylor series and not-
ing that the velocities on the old and new surface are both zero, the vari-
ations in the velocity components can be written as

(32a)



U~ du-~ whereu, is the normal velocity component andis the surface normal

u= 38 _6_yy (35a)  direction. The velocity gradient term in this equation is zero by the con-
tinuity equation, so that the cost function in Eqg. (39) corresponds to
specifying a pressure distribution. However, all the terms in Eq. (39) are
= _6_V;(_6_Vy (35b) required for the derivation of the boundary conditions for the adjoint

ox~  oay equations. The final boundary conditions¥p and W, for specifying

a pressure distribution are given by
In order to derive the boundary conditions, Egs. (30), (31), (32a), and

(32b) are combined, and terms that involve the variations in the velocity W, = -2k (c —c*) (41a)
Y . . . . . x\~p p.
gradients ang are eliminated. This requires that the following relation-
ships hold: .
Wy = =2k (c,—¢p) (41b)
kW, + kW3 + 2k, cosa + 2k sina = 0 (36a)

The continuous adjoint formulation for Navier-Stokes equations de-
scribed in this section poses a problem in the evaluation of the sensitivity
(36b) e . L ; h
derivatives. The evaluation of these derivatives requires second deriva-
tives of the velocity components becausg and G, involve velocity

—4k,cosa — 2W,k, + 4k sina + 2k sina = 0

— 2k, cosa — 2k, sinat — Wok, — W3k, = 0 (36¢c)  gradients that are further differentiated in Eq. (34a). Recall that these

terms arise from expressing the cost function on the new surface in a

This system is overdetermined and is satisfied by the choice Taylor series expansion about the old surface. In the present work, be-
cause the flow solver is only second-order accurate, pointwise second

W, = —2cosn (37a) derivatives are inconsistent in general. An accurate evaluation of second

derivatives would require the flow solver to be at least third-order accu-
rate. If a mapping is employed, as is possible with structured grids, the

W3 = =2sina (37b)  surface remains at a constant coordinate line, and this problem does not
occur.
The variation in the drag coefficient can be obtained from Eq. (34a) by In a discrete adjoint approach, the restriction on defining a suitable
using these equations in conjunction with Egs. (24a) and (24b). cost function and the need for second derivatives are eliminated, as will

Without the inclusion of the full stress tensor in the cost function, it ide shown. However, the full implication of designing for cost functions
not possible to obtain a consistent set of boundary conditiotd,fand  in a discrete framework for which boundary conditions are not obtain-
W, . Generally, suitable cost functions are composed of terms that wible in the continuous case is not clear at this time.
appropriately balance the boundary terms from the residuals. In particu-
lar, cost functions such as lift, drag, and pitching moment are admissible. Discretization
It is not immediately obvious that the specification of a pressure distri-
bution is allowable because of the absence of viscous terms in the cé#w equations
function. However, a suitable cost function can be obtained by first re- The discretization of the flow equations is first addressed since it has
placing the pressure term in the stress tensor by the difference betwesplications for the discretization of the adjoint equations. The discreti-
the current and the desired pressure coefficZegyt. This is then pre- zation of the compressible inviscid equations is given first; a similar pro-
multiplied by the surface normal scaled by this difference nand  cedure is used to discretize the inviscid contributions for the incompress-
postmultiplied by the surface normal. In nondlmensmnallzed variablesble equations. The equations represent a system of conservation laws
the resulting expression is given by for a control volume that relates the rate of change of a vector of state

variablesQ to the flux through the volume surface. The equations are
written in integral form as
Ac, 2pou _H Qu , ov
"2 Redx ReWy ox

0
k, O 2(QdQ + §F(Q,n)ds = 0 42
=I{kxAcp, kyAc,} ) Eds (38) atJZ’Q +f (Q,n)ds (42)

oOoo
<

Hou, aVD Ac _2u v
ReW ox Re 0y where for compressible flow® = [p, pu, pv, E]" and F(Q, n)
the flux of mass, momentum, and energy through the control volume. In
these equations) is the vector normal to the boundapy,is the den-
sity, u andv are the Cartesian velocity components, &ni the total
energy per unit volume. These equations are closed by the equation of
state for a perfect gas.
_ I@AC 2 (39) In discretizing Eq. (42), the variables are stored at the vertices of a tri-

After expansion, Eqg. (38) can be rewritten as

angular mesh. The control volumes are defined by the median dual. The
discrete form of Eq. (42) for vertex i, with an associated control volume

Kk U, oV K U, ov Q,,is given b
Ack%k Yy axm+ky%k Yy + = s i+ is given by

0 —
This equation can be recast in terms of the velocity gradient normal to gt QU+ ; Fily =0 (43)
the boundary as i I
where F;; is the numerical flux that approximates the normal flux
Gl 90_ Bjs (40) through the control-volume edge dual to the triangle edge that joins
IE? P R on nodesi and |;; is the length of the dual edge, aNd is the set of ver-



tex neighbors of . The numerical fluxes are computed by using a Roewhere the extrapolated costate variables and are obtained by
type approximate Riemann sohvr: using formulas that are similar to Egs. (45a) and (45b). The data used for
evaluation of the matrices and the formulas used for obtaining the cos-
1 ~ tate variables on the faces of the control volumes have been chosen so
Fij = 5[F(Qin) +F(Q;in) ~ AQ. Qin|(Q -Q)] (44)  that a discrete adjoint formulation is obtained for first-order spatial accu-
racy. The resulting discretization of the inviscid contributions may be

whereA is the Jacobian matrix evaluated at the Roe stateQarahd written as follows:
Q, are the dependent variables on the right and left boundaries of the

control volume face which are obtained by extrapolation: 9 wdo — ; Gyl; = 0 (48)
ot .
J i

) j . ) . .

Q = Q+d0Q 1) (45)
The numerical fluxG;; , used in calculating the residual for the control
volume that surrounds node , is given by

Q = Q+2momr -r) (45b) X o
6 = FAQ@m W+ )+ FEEW-w)] w9

where¢ = O for first-order discretizationp = 1 for second-order dis-
cretization, and; and; are the position vectors of nodesandj , re- ~ )
spectively. Note that the definition of the fluxes in Eq. (44) is differentéhere @ = |A(Q, Qin)|(Q,-Q)) . Note thaGy #—G;; .

from a standard Riemann solver in that the unsplit fluxes are evaluated©On Solid boundaries, the flux along the wall for closing off the surface
by using data atthe nod€s  a@d instead of data at the extrapolafBifgral around node i is given by

statesQ, and, . This discretization remains second-order accurate and

has the benefit that the only term that involves data other than at the im- G/l = kxAiTqJ + kyBiTqJ = ﬂiTqJ (50)
mediate neighbors occurs through the dissipation. This enables a discret-

ization of the continuous adjoint equations to be easily obtained that Iifbr enforcing the boundary conditions on the costate variables, a weak

identical to the discrete adjoint approach, except for small differencegmjation is used in which the fluxes are modified appropriately to re-

that arise from_ the high_er order diss_ipa_tion. . . flect the imposition of the boundary conditions. Numerically, the Jaco-
For computing the viscous contributions to the residual, a flnlte-volﬁ%

. . . s L hian matrix in Eqg. (50) is evaluated without explicitly enforcing the
ume scheme is used that is equivalent to a Galerkin discretization wi a. (50) piet’y 9

. . ; . . e N undary condition on the flow variables that no flow is allowed through
linear basis functions. On triangular grids, this discretization only rege g rface. In this way, the contributions from the fluxes in the interior
quires data at the immediate neighboring nodes.

in conjunction with the boundary flux in Eg. (50) combine so that the re-

- ) sulting discretization corresponds with that from a discrete adjoint ap-
Adjoint equations

. . L . . Proach.
The adjoint equations can, in principle, be discretized by any stable Nt that in Eq. (49) the linearization &  is somewhat cumbersome
and consistent method. However, insufficient grid resolution may resuff;+ has been previously derived (see for example Ref. 4). A simpler

in poor accuracy of the sensitivity derivatives in that they do not agreg, ation can be obtained by employing the approximate linearization of
with those obtained by finite differences. Inaccurate sensitivity derivay, 5o

tives may lead to failure in the optimization proc&sSensitivity deriv-
atives that agree with finite-difference gradients can be obtained regard-
less of grid size by making the equations discretely adjoint to the 0P _ |A|
discretized flow equations. However, achieving this for higher order dis- 0Q
cretizations can be an onerous task. In the present work, the discretiza-
tion has been derived with strong guidance from a discrete adjoint fof-his equation is less complicated than the full linearization and only dif-
mulation so that for first-order accuracy, a direct correspondence withfars from the exact linearization in proportion (Q, — Q,) , but numer-
discrete adjoint approach is achieved. Higher order accuracy for the disal experiments have indicated that on very coarse grids some of the
cretization of the inviscid terms is obtained through the use of extrapolaensitivity derivatives are of poor accuracy compared with finite-differ-
tion of the costate variables. ence derivatives. Although these errors decrease as the grid resolution
The discretization of the adjoint equation is performed by adding ancreases, the full linearization is used in the current work.
time derivative to Eq. (8) and using a finite-volume type of method sim- Since the viscous equations used in the current study are for incom-
ilar to that used for the flow solver. In this context, Eq. (8) is integrategressible flow, the corresponding terms in the adjoint equations (Eq.
over control volumes, where the matrices are taken outside the integrafg?a)) have the same form and are therefore discretized in the same man-
and are evaluated using nodal point values of the dependent variablesner. The Dirichlet boundary conditions fgr, and Y5 are strongly en-
forced with the same technique used to set the velocities to zero in the
3 01 9w oy O flow solver. In the implicit solver, this is achieved by zeroing the off-di-
2 (wdQ — miT ZdQ + BiT ~TdQ0= 0 (46) agonal elements in the rows of the matrix that correspond to boundary
atz[ O z[ax lay O nodes, as well as the appropriate terms on the right-hand side.
For viscous flows, a direct correspondence with a discrete adjoint for-

The volume integrals are converted to surface integrals over each of tmy!ﬁlnontEengsi?tri]r;evaitr;&aéti?g?u:)gsugg?nngzltg g's 'f’ozii'éé?g?g 2%(:'('
control volumes, and the values of the costate variables on the bourfdhNNg 9 pp

(51)

aries are obtained by using upwind type formulas: rsnoe”?jhv\?;lfwn in Fig. 2, where it is assumed that nodes 1, 3, and 5 lie on a
1 _ . @ T . .. . . .
W, = 5[(””i + W) +AQ;N) T%E (qu_qu)] 47) by In the discrete adjoint approach, the augmented cost function is given



- T In light of the discussion above, it is of interest to compare the values
QD W, X(D)) = 1(Q, D) + ¥ R(Q D, X((D)) (52) of the costate variables that are obtained from both the continuous and
. . . . ..the discrete adjoint formulations for a viscous flow. In Fig. 5, profiles of
whereR is the vector of discrete residuals and, thus, depends expllcnlw2 as a function of the distance from the body are shown for a case in

on the grid-point locations( . Taking variations of Eq. (52) and re- \ypich the cost function is the drag of an airfoil and the location of the

grouping terms yields the adjoint equation profile is taken to be at the midchord of the airfoil on the upper surface.
In the figure, the values d¥, agree well away from the body. Near the
T B0 boundary, however, the costate variables from the continuous and dis-
[a_R] {(W1+E=0=0 (53)  crete formulations do not agree. As the mesh is refined, the distance
[P0 from the surface of the airfoil in which these discrepancies occur de-
creases. Thus, one would expect that in the limit of vanishing mesh size,
The variation in the cost function is then given by the two approaches would agree.
_ @l TR L ORIX
% =55+ 4o *oxon 64
$00] M
In these equations, it is understood that the linearization of the residual 9.00! N
includes the full effects of the boundary conditions. Hé¥/ 0D rep- 8.08], il
resents the sensitivity of the interior grid points to changes in the design 0,00] ! ] ! [
variables. In the continuous adjoint formulation described earlier, no 9], 1
counterpart to this term exists. The determination of grid sensitivities is T - - T
dependent on the methodology used to restructure the mesh. Neglecting ORO — :%8- I I
these terms is equivalent to freezing the interior grid points, regardless of QU 0.00] ' | !
changes in the surface geometry. Nevertheless, in a second-order-accu- '.‘O.‘OJI l,
rate scheme, théR/0dD term in Eq. (54) accounts for changes in the re- 0.00] | 1 [
siduals at the nodes immediately adjacent to the surface, as well as at the ®.00], 1
second nearest neighbors. 00| !
0,00 ] L
@00 : :
(IoI:mns associated with Dirichlet rows
4 2
Figure 3. Matrix structure for discrete adjoint approach.
> 1 3 Row with Diri D00 DOOHOOOROCX
ow with Dlrlch_let —| [0,0,0] 0,0,0| | 8“8“8 | 8“%8
Figure 2. Sample mesh. boundary conditions —p _C_).O_.O_ C)_.O._O_I ©.09 '10.00] |
oo o 06| [6]0/0 [C00
.J.J.. .;.4‘. | .4.4. I OJOJO
A diagram of the matrix structure associated with the configuration of .00 006 (006 000
nodes in Fig. 2 is shown in Fig. 3 for the discrete adjoint approach. The o ool eee ' 000 [000 |
matrix structure for the continuous adjoint approach is shown in Fig. 4. Row with Dirichlet 8&82 8‘.‘2: : 8JOJ8: : 8‘0‘8:
In these figures, the solid circles represent the nonzero entries in the ma- ~ °°undary conditions —p| .00 208 00911808
trices. Note that in both figures, a first-order discretization of the invis- 0,00 000 I [eee [0ee
cid terms is assumed so that the stencil only involves the nearest neigh- oel 259 : ;;j: e
bors. -—— - - === -
Comparing Figs. 3 and 4, it is seen that the matrix structures are sig- o ..o — 2.9.9 929 : 8{;81: .9
nificantly different. This is due to the strong enforcement of the no-slip boundary conditions —p| [2.0.0 0.0,0) ! 0.0,0]1[0'0,6)

condition in the flow solver, which leads to zeros in the columns of the
adjoint system. For the continuous case, explicit enforcement of the
boundary condition o, and; leads to zeros along rows. Of partic-
ular interest in the discrete adjoint case is that because of the zeros in the
columns, the solution of the costate variables in the interior of the mesh . ) ) .
does not depend on the values¥éf and W, at the boundary. Further- In Eq. (53),% can be determined provided it 0Q IS nonsingu-
more, because the residual equation for the flow solver at these pointdd& irrespective of the cost function. Also, no difficulty is encountered in
replaced by a Dirichlet condition on the velocities, the residual does ndetermining the sensitivity derivatives with Eq. (54). In particular, note
depend on the design variables so @¢dD = 0. Therefore, there is t_hat this equation dogs not require exphcn calculation c_)f secon_d deriva-
no contribution to the sensitivity derivatives in Eq. (54) from theséives. Therefore, for viscous flows, a discrete approach is used in the cur-
terms. The result is that in the discrete adjoint case the valsés ahd ~ rent study, except that higher order accuracy for the inviscid terms is
W, on the boundary are completely arbitrary and have no effect on trgchieved by using the continuous approach described in the inviscid sec-
sensitivity derivatives. This has been verified by numerical experiment$on. The implementation of this approach does not entail much addi-

8

Figure 4. Matrix structure for continuous adjoint approach.



tional effort because the inviscid terms are already discretely adjoint for For inviscid flows, the strategy outlined in Ref. 42 is used to restruc-
first-order accuracy, and the viscous terms only involve the nearegire the mesh in response to the changes in the surface shape. The ten-
neighbors. The accuracy of the derivatives using this approach is commen-spring analogy is employed to allow the field grid points to respond
rable to that obtained for inviscid flows. For first-order accuracy, the reto the displacements of the points on the surface. The following linear
sulting method is identical to the standard discrete adjoint approach. system of equations is solved with a Jacobi iteration strategy:

; Ki;(Ax;—Ax;) = 0 (55)
j i

where Ax; andAx; are the displacements from the iglitial position for
T nodes i and j. The spring stiffneks is assumed to bk-‘?l; , Wherel;; is
b the length of the edge that joins nodeandj . Note that by using Eq.

(55), the mesh remains unchanged when the surface is held fixed. When

the boundary shape changes during the design cycle, this method does
— Discrete not guarantee that the grid lines will not cross. An improvement is to
_| - Continuous make the spring system nonlinear (i.e., the shape change is decomposed
i into smaller steps, and the procedure is repeated at each step). Also, in
L order to maintain good mesh quality throughout the design cycle, the
edges are reconnected according to either a Delaunay criterion or by lo-
2 cally minimizing maximum angles (min-max).
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Figure 5. Profiles of?, obtained from both discrete and
continuous adjoint formulations.

Solution procedures

For the flow equations, an implicit solution method with multigrid ac- b)
celeration is used. Details may be found in Refs. 1, 2, and 9. The dis-
cretized equations for the costate variables in the absence of the time de-
rivative represent a linear system that can be solved by using a technique
such as preconditioned GMRESAlternatively, by retaining the time
derivative, the equations can be solved to steady state by using a time-.. . .
marching procedure. In the present work, the time term is included and & 19ure 6. Methodology for mesh movement for viscous grids.
multigrid procedure is used with preconditioned GMRES as a smoother.
The preconditioning is accomplished using an incomplete lower/upper For grids with high-aspect-ratio cells, the inviscid strategy fails for a
(LU) decomposition with no fill-in. The motivation for retaining the number of reasons. The spring analogy typically results in invalid grids
time term is that this approach often converges in situations for whictith crossing of grid lines. In addition, both the Delaunay and min-max
the GMRES procedure might otherwise “stall.” Note that because thesiteria often result in nodes with large connectivities. Therefore, the
equations are linear, the matrix-vector products are easily formed Hgid-movement scheme is modified to deal with Navier-Stokes grids.
simply passing the vector to the residual routine in place of the costaide Delaunay criterion is replaced by the min-max criterion where the
variables. By forming the matrix-vector products in this way, the largestwapping is only carried out if the maximum angle exceeds a specified
contribution to memory requirements is through the preconditioner sangle (set to 150). The distance to the wall for each node in the mesh is
that the resulting scheme requires roughly the same amount of memdifgt computed. When the points on the surface are displaced, the field

as the flow solver. points move in response, as shown in Fig. 6(a). Here, AB is an edge on
the surface of the body. Nodes A and B move to A’ and B’, respectively.
Grid generation and mesh movement For the field point X, the nearest point on edge AB is denoted by C.

The unstructured meshes used in this work are generated using fil/én vectors AA"and BB', the vector CC’ is obtained by linear inter-
software package described in Ref. 28. This employs an advancing frdfflation. The field point X moves to X’ such that XX is equal and par-
type of method that generates good quality grids for both inviscid an@€l to CC". In order to contain the effect of grid movement to a speci-
viscous calculations. fied region, XX’ is multiplied by an exponential factor that decays from

For shape optimization, the design is carried out in a domain thanity at the surface to nearly zero at a specified cut-off distance. This
changes during the design cycle as the shape of the boundary chandg§nique, in combination with edge swapping, allows for large changes

Therefore, the existing grid is modified in order to conform to the chang Pody shapes even when highly stretched grids are used. However, the
ing domain. grids tend to lose orthogonality near the surface when large changes

occur in the surface geometry. It is also desirable to revert to the inviscid



algorithm in regions where the grid is not highly stretched. To improvd770 nodes is generated, with 128 grid points on the surface of the air-
orthogonality near the surface, the method described above is repladed. The cost function is the lift coefficient, and derivatives with respect
by the one shown in Fig. 6(b) within a specified distance to the wall. Ito the Bezier control points are obtained using the continuous adjoint
this technique, CC’ is obtained as before, but C’X’ remains orthogonahethod and are compared with those from finite differences. The Mach
to A'B’ and the normal distance d is maintained. Outside another speaiumber for this case is 0.75, and the angle of attack i$ 1% result-

fied distance from the wall, the inviscid algorithm is employed. Thusing pressure distribution is shown in Fig. 8 and exhibits a shock on the
the final scheme is a blending of all three methods. This scheme happer surface of the airfoil.

been found to be effective in dealing with Navier-Stokes grids, even for
large-scale changes in surface shape, and is reasonably insensitive to the
cutoff distances provided that the region in which orthogonality is main-
tained is restricted to the immediate vicinity of the wall. Unless the dis-
placements of the surfaces are large, the last step can be skipped.

The technique described above is demonstrated in Fig. 7 for a Naviet
Stokes grid about an airfoil. The grid contains 26949 nodes, and the
spacing at the wall i2 x 10° relative to the chord. In this figure, the
nose of the geometry is distorted by moving one of the Bezier control
points in this region. Although the geometry is significantly altered, a
valid mesh results, which maintains good quality as well as orthogonal-
ity near the surface. It should be pointed out that for multielement con-
figurations, the procedure described may fail for large relative displace-
ments of the elements because the cutoff regions that may be initiall
distinct could “collide.” Further work is necessary in this area.

Optimizer 4 4
The optimizer used in the current study is KSOPWhich uses a

quasi-Newton method to determine the search directions and a polync
mial line search technique to determine the step length in the descent ¢ - .
rection. This code has been chosen because it is capable of multipoil
design and can handle both equality and inequality constraints. In addi 0.0 0.2 0.4 0.6 0.8 1.0
tion, upper and lower bounds can be placed on design variables; this x/c
the method that is currently used to enforce the geometric constraint.

necessary to maintain a viable geometry throughout the design cycle. Figure 8. Pressure distribution for NACA 0012 with, = 0.75
Results anda = 1.25 .

1.0 p- ]

Accuracy of derivatives e - . . -
To assess the accuracy of derivatives, an isolated transonic airfoil a The sensitivity derivatives of the lft with respect to the y position of
a subsonic multielement airfoil (where in’teraction between the elemengl%je individual control points are shown in Figs. 9 and 10 using the con-
( inuous adjoint approach. In these figures, the derivatives are obtained

occurs through the flow field) are studied. For the first test, a singIB . .

) . . ’ . 2.y using the second-order formulation for both the flow solver and the
12th-order Bezier curve 1s used to approximate an NACA 0012. a'rfc"laldjoint equations. The corresponding derivatives for first-order accu-
with only 13 control points. In the experiment that follows, a grid with
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A) Initial mesh. B) Distorted mesh. C) Close-up in nose region.

Figure 7. Example of mesh movement for viscous mesh.
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racy are not shown because the first-order scheme has been verified toAs mentioned previously, unless the adjoint equations are discretized
be discretely adjoint to the flow solver in this case. In Fig. 9, the derivaappropriately, the resulting derivatives may exhibit inaccuracies when
tives at the first and last control points (numbers 1 and 13) corresponddompared with finite-difference gradients on coarse grids. To study this
those at the trailing edge. Although the derivatives of the control pointaspect more closely, a two-element airfoil is considered for which the
at the trailing edge are available from the adjoint approach, the corrsurface of each element is represented with a third-order B-spline with
sponding finite-difference derivatives are not obtained because the g&t control points. The cost function is the lift coefficient, and the deriva-
ometry would “separate” at the trailing edge. Instead, the grid point dives with respect to the design variables on the aft element are com-
the trailing edge is perturbed, and the resulting derivative is comparemited with both methods on a set of four sequentially finer grids. These
with the sum of the derivatives at this location from the adjoint apgrids, denoted as grids 4, 3, 2, and 1, consist of 1103, 3030, 9591, and
proach. A close-up view of the derivatives away from the trailing edge 48,392 nodes, respectively; of these nodes, 88, 176, 352, and 704 lie on
shown in Fig. 10. The figures indicate that the derivatives are fairly adhe airfoil surfaces. Obtaining the sensitivity derivatives with central fi-
curate; the largest discrepancy between the adjoint and the finite-diffenite-difference formulas requires 58 flow-field computations for each
ence derivatives is less than 5 percent. Note that in this study specifiggrid. For the adjoint approach, all derivatives are obtained in one solu-
tion of the costate variables as a boundary condition acrodson of the adjoint equations, which requires roughly the same amount of
discontinuities in the field, as suggested in Refs. 17 and 18, is not dom@rk as one solution of the flow field.

with no apparent degradation in accuracy.

5
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Figure 9. Comparison of derivatives obtained using adjoint
approach with finite diérences for RCA 0012 withM,, = 0.75

anda = 1.25 .
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Figure 11. Accuracy of derivatives for flap on two-element
airfoil; third-order B-spline with 31 control points

In Fig. 11, finite-difference derivatives are compared with those ob-
tained using the formulas for the continuous adjoint approach. In this
figure, the derivatives in the immediate vicinity of the trailing edge are
not shown so that the derivatives over the bulk of the airfoil can be ex-
amined more closely. The importance of the derivatives near the trailing
edge is discussed later in this section. In addition, derivatives are also
shown from a “hybrid” approach in which the costate variables are ob-
tained from the continuous adjoint approach and are subsequently used
in a discrete adjoint framework to compute the sensitivity derivatives by
using Eq. (54). In this approach, no approximations are used in Eq. (54),
so that the only difference between the hybrid approach and a purely dis-
crete adjoint approach stems from small differences in obtaining the cos-
tate variables for the second-order discretization. Recall that in the con-
tinuous adjoint case, no sensitivities that result from mesh movement
appear in the equations. Therefore, for the hybrid approach, the mesh
sensitivities have been neglected in order to examine the effects. As dis-
Control Point cussed earlier, when the surface of the airfoil is perturbed, the residuals
are affected at the nodes on the body as well as at their first and second
nearest neighboring nodes (the second nearest nodes are affected
through the gradient computation). Therefore, the residuals at these

— Adjoint
Finite—difference

Gradient
»
T I T I T I T I T I T I T I T I T I T

—
N

Figure 10. Close-up view of Fig. 9
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nodes contribute to the sensitivity-derivative calculation in Eq. (54). For the case in which the airfoil and the mesh are simultaneously per-
However, inclusion of these contributions does not account for angurbed, the lift does not change and the derivative is zero, independent of
change in the interior residuals caused by the possible movement of intee mesh size. This case corresponds to simply a shifting of the origin of
rior mesh points. The situation is thus equivalent to the case for whidhe coordinate system; therefore, no calculations are required. The im-
the surface of the airfoil is modified but the interior of the mesh is helghortance of the second method for computing the finite-difference deriv-

fixed. ative is that this situation corresponds to the case in which grid sensitivi-

As seen in the figure, the finite-difference derivatives are nonsmootties are ignored in a discrete formulation. This correspondence has been
on the coarser grids and have several derivatives of negative sign. TVerified using the derivatives obtained from the first-order adjoint code,
derivatives obtained with the hybrid approach follow an almost identicakvhere the derivatives are obtained by using the hybrid methodology and
pattern. The derivatives obtained from the continuous adjoint approathe grid sensitivities are neglected. The third method is chosen simply
are smoother on all of the grids and remain positive over the entire intéibr demonstration purposes. Note that in the numerical experiments that
val shown. Although discrepancies result over parts of the airfoil, the ddellow, all results are converged to machine zero and the step size for
rivatives calculated with all three methods agree as the grids are refineshmputing the finite-difference derivatives has been varied over a large
A case could be made that the continuous adjoint derivatives are “bettaginge of values with no significant changes in the results. In all cases,
because the signs of derivatives are always in “correct” agreement withe step size that is used is much smaller than the distance from the sur-
those from the finest grid. However, when designing on the coarséace of the airfoil to the first grid line, so no crossing of grid lines occurs.
grids, this could cause the optimizer to fail because the derivatives doln an ideal situation, the lift of a single airfoil in an unbounded flow
not accurately represent the discrete derivafil&onversely, the hy- would be insensitive to a vertical change in the coordinates so that the
brid approach may be considered to be “better” in that the derivativederivative would be zero. Numerically, however, changes may occur be-
agree more closely with those obtained from finite differences on all theause of the changing location of the airfoil relative to the outer bound-
meshes. Although this may lead to successful numerical optimization @ry and because of possible changes in the grid. In the case where the en-
all grids, the resulting geometry may be quite different from that obtire grid is shifted, the derivative of lift due to a shift in the y location of
tained with a finer grid. In either case, a suitably refined grid must bthe surface is zero. By shifting all grid lines except the one at the outer
employed in which case neither the continuous nor the discrete approaobundary, the derivatives have been found to remain very small
offers a significant advantage over the other. (8(10’5) ) which indicates that the derivative of lift due to the location

In Fig. 11, the discrepancies in the derivatives on the coarse grids$ the outer boundary is small. In this case, the changes are not only at-
stem from three sources. These include the fact that the second-ordi#outable to the changing location of the outer boundary but also to
scheme is not exactly discretely adjoint to the flow equations on alome small grid effects at the outer boundary.
grids. Also, small errors in the finite-difference calculations may be
present as a result of the choice of step size which was not optimized for
each of the 29 design variables although a reasonable effort was made to
determine acceptable values. In addition, the derivatives obtained fro
finite differences include the effect of grid sensitivities because the inte
rior mesh points are relaxed each time a design variable is perturb
using the techniques described earlier. As mentioned previously, neith
the continuous adjoint nor the hybrid approach has included these effe:
because the continuous formulation assumes no dependence on a |
and the hybrid formulation has neglected these contributions for this te: "
The figure shows clearly that as the grids are refined the derivatives ov
the bulk of the airfoil approach the same value regardless of the methc
ology used to obtain them.

Although it is tempting to conclude from the above example that grit :
sensitivities do not play a major role as the grid is refined, this conclt K -
sion is not always valid. To demonstrate, a simple example is given o 5
which the geometry and flow conditions are held fixed while the gridis ~ ~=[
allowed to change. More specifically, the relationship between the ai T
foil surface and the grid is changed. The role of the grid sensitivities |
studied by considering the derivative of the lift of a single airfoil due to ¢
vertical translation. —4

For this case, an NACA 0012 airfoil at a free-stream Mach number ¢
0.5 and an angle of attack of 2s considered. A sequence of structured /N
C-type grids is utilized in which each grid represents a uniform refine-
ment in each direction over the previous level. Two structured-grid Figure 12. Finite-difference derivatives of lift with respect to
coded®“' are used, in addition to the unstructured-grid flow solver. Fokertical shift in airfoil position obtained with fxi computational
the unstructured flow solver, the cells in the structured mesh are simply grid
divided into triangles. The derivative of the lift with respect to transla- ’
tion of the airfoil surface in the y direction is computed with central dif- ) o L .
ferences. The airfoil surface is perturbed a small amount, and three di_f-'n Fig. 12, the sensitivity derivatives of the lift with respect to transla-

ferent techniques are considered for modifying the interior mesh: tion of the airfoil in the y direction are shown for methods 2 and 3 de-
1. The airfoil surface and the entire mesh are shifted. scribed above. As seen in the figure, the derivatives due to the transla-

e ; . tion of the airfoil surface depend greatly on the methodology used to
2. f'ir)?eedalrfon surface is perturbed, and the rest of the mesh remains modify the grid. More importantly, these derivatives do not tend to zero

- . as the mesh is refined but actually increase in magnitude!
3. The airfoil surface, as well as the mesh line that extends from the - computing the derivative of lift with respect to a vertical translation
trailing edge of the airfoil to the downstream outer boundary are  corresponds to a simple summation of the derivatives of lift with respect
perturbed, and the rest of the grid remains fixed. to the y position of each of the design variables. For exardplédY

for the aft element of the airfoil shown in Fig. 11 can be computed by a
12
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summation of the individual derivatives. Although the individual deriva- From the foregoing discussion, it is apparent that the grid sensitivities
tives shown in Fig. 11 converge as the mesh is refined, the derivativesregar the trailing edge of the airfoil can play a major role in the computa-
the trailing edge do not. In Fig. 13, the individual sensitivity derivativegion of the derivatives necessary to position airfoils relative to one an-
that are obtained with the hybrid approach are now plotted at a scale ather. It should be emphasized that during an actual design the grid is
that the derivatives at the trailing edge can be seen. Whereas the deriganerally “relaxed,” so that the original relationships between the grid
tives away from the trailing edge converge as the grid is refined (see Figoints are more or less intact, and that the effect of the grid would be
11), those at the trailing edge of the airfoil do not exhibit the same levehuch less pronounced than that shown above. The important point is
of convergence and, in fact, continually change as the grid is refinethat without inclusion of the grid sensitivities, the derivatives obtained
This behavior appears to be caused by the singularity at the trailing edgeuld correspond to the case above in which the interior grid is held
and is the source of the sensitivity of the derivative to the manner ifixed. Because the derivatives clearly depend on the manner in which the
which the grid is treated. mesh and the geometry interact, this factor must be accounted for in the
computations when derivatives are needed in the immediate vicinity of
the trailing edge. Furthermore, the errors caused by failure to properly
account for these terms do not vanish as the mesh is refined. However,
from the results in Fig. 11, it appears that grid sensitivities can be safely
neglected in regions away from the trailing edge, provided that the grid
is sufficiently refined.

O ——TT—T"—T T T T
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Inviscid Design Examples

T An example of shape optimization is shown below in which drag min-
imization has been performed for a single airfoil. The initial geometry is
an NACA 0012 airfoil, described by a third-order B-spline with 50 con-
] trol points. The grid consists of 4763 nodes with 128 nodes on the airfoil
o surface. The Mach number for this test is 0.75, and the initial angle of at-
tack is 2 . For this case, the computed lift coefficient is 0.4229, with a
corresponding drag coefficient of 0.0123. For this design, the cost asso-
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Figure 13. Sensitivity derivatives.
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ciated with maintaining the current lift coefficient is combined with that
for minimizing the drag:

1(Q.D) = 3(ei-¢0)7 + 10x3(cs—cf)’ (56)

wherec,U is the desired lift coefficient aogHl s zero. The factor of 10
associated with the cost function for drag is chosen so that the contribu-
tion from each cost function is of the same order of magnitude. The de-
sign variables are the y-coordinates of the control points that describe
the airfoil, except those at the trailing edge, which remain fixed. The
angle of attack is an additional design variable and is allowed to vary in
order to maintain the lift. The total number of design variables for this
case is 49. For this case, the continuous adjoint approach is used instead
of the hybrid approach.

After 10 design iterations, the lift coefficient is 0.4225, which is in
close agreement with the specified lift coefficient of 0.4229. The drag
has been reduced from 0.0123 to 0.0016, and the final angle of attack is
1.747 . The objective function and the root mean square (rms) of the
sensitivity derivatives have each been reduced between 1 and 2 orders of
magnitude. Note that these gradients are not the projected gradients and
that several side constraints are active. The initial and final pressure dis-
— tributions are shown in Fig. 15; the corresponding geometries are shown

in Fig. 16.
-3 The next case is that of a two-element airfoil configuration that con-
sists of two airfoils in which the top airfoil is displaced from the other in
the positive y direction by 0.5 chord and in the negative x direction by
0.5 chord. The free-stream Mach number is 0.60, and the angle of attack
is 0°. A sequence of three grids for use with multigrid acceleration has
been generated for this case. The finest grid consists of 7974 points and
is shown in Fig. 17.

In Fig. 14, finite-difference derivatives similar to those shown in Fig. For this case, the objective is to modify the shape of the aft airfoil in
12 are shown for a symmetric Joukowski airfoil at the same Mach nun®rder to achieve a desired pressure distribution on the front airfoil. The
ber and angle of attack as before. For this airfoil, the slope of the uppéesired pressure distribution has been obtained from analysis of the ini-
and lower surfaces in the analytical definition are identical at the trailingjal configuration, with the shape of the aft airfoil modified. Although
edge, and the effect of the singularity should be reduced. These derihis test case is somewhat fabricated, it demonstrates flexibility that may
tives have been obtained by shifting only the surface of the grid, as ke difficult to achieve with inverse methods in which the interaction be-
method 2. As is clearly seen in the figure, the derivatives are mudween elements is not taken into account.
smaller in magnitude than those for the NACA 0012 and do not increase Pressure contours for the initial flow field are shown in Fig. 18(a); the
in magnitude as the grid is refined. corresponding contours é¥, are shown in Fig. 18(b). The pressure
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contours indicate the presence of a shock between the two airfoils, with a
Mach number ahead of the shock on the lower airfoil of approximately
1.25. The costate variables shown in the accompanying figure, on the

other hand, exhibit a shocklike structure in a location that corresponds to m»“““‘>

the sonic line in the flow field. However, in designing for other objective <§N€%ﬂ}}v"m

functions, the contours of the costate variables change and do not neces- ‘g&NAuﬁgﬁmthéz

sarily show such a clear correspondence with the flow field. For exam- "%gv'ﬁ‘ﬁ'@!f}é@é{é‘ X

ple, if the cost function is zero at the design point in an unconstrained 45,: S o0

optimization, the costate variables are all zero, independent of the flow 3‘;5;:,; m; a

field. s O
Wit }?gﬁﬁ%
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The initial and final pressure distributions on the surface of the airfoils K SN
are shown in Fig. 19; the pressure contours after three design cycles are ‘jgﬂ =R
shown in Fig. 20. As seen from Fig. 19, the pressure distribution ob-

tained after three design iterations agrees closely with that desired. The
cost function has been reduced about 3.5 orders of magnitude, and the
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rms of the sensitivity derivatives has been reduced about 3.2 orders of X

magnitude after the second design cycle. The final pressure distribution WAVAVAYRVARRSEE i;;ggv
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Figure 17. Initial configuration for two-element test case.
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Viscous Design Examples

For the first viscous case, the objective is to maximize the lift of an
isolated airfoil by modifying the shape, with the angle of attack held
constant. An initial computation has been performed for an airfoil at a
Reynolds number of 5000 and an angle of attack’ofThe mesh used
for this computation has 6951 nodes of which 128 lie on the surface of
the airfoil. The airfoil geometry is described by using a 12th-order Bez-
ier representation similar to that described earlier, except that several of
the control points have been modified so that the airfoil is no longer
symmetric (see Fig. 21). For this case, nine design variables have been
used. These correspond to the y-coordinates of the control points away
from the immediate vicinity of the trailing edge. The initial lift coeffi-
cient is 0.0950, and the initial drag coefficient is 0.0545. After three de-
sign cycles, the lift has been increased to 0.2571 and 5 of the nine design
variables have hit their imposed side constraints. Although no constraint
or objective was placed on the drag, the drag coefficient has dropped to
0.0509. Note that for this case both the initial and final configurations
have a small separated region that extends over the last 25 percent of the
airfoil. Despite the presence of separation, a steady flow field is ob-
tained. In the event of unsteady separation, the adjoint approach as de-
scribed would not be applicable because the steady-state residual is as-
sumed to be zero and is used as a constraint for the optimization.
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Figure 21. Viscous design for maximizing lift.

For the final case shown in Fig. 22, the objective is to match a desired
pressure distribution that has been obtained from a previous analysis of
an NACA 0012 airfoil. The initial airfoil geometry has been obtained by



simply displacing several of the B-spline control points that define theause the entire flow field must be computed to higher order accuracy. It
original airfoil. The Reynolds number is 5000, based on the chord of theppears that the most expedient and cost-effective means for alleviating
airfoil, and the angle of attack is held fixed &t Zhe mesh used for this this problem is to essentially abandon the purely continuous adjoint ap-
is similar to that used in the previous test case and has approximatglgoach in favor of a more discrete approach, as described in the present
7000 nodes. For the current test, the cost function has been reducedpayer. This approach has the added benefit that the contributions to the
4.5 orders of magnitude after three design cycles, and the gradients haemsitivity derivatives due to the grid may be included. These terms do
been reduced by 1.5 orders of magnitude after the second design cyciet naturally appear in the continuous framework unless a mapping to a
As seen in Fig. 22, the target pressure distribution is obtained, and tfieed computational domain is first employed. However, it is shown in
final airfoil shape is that of an NACA 0012 airfoil. this paper that these terms are critical in obtaining accurate derivatives
for geometries with singularities.

Another possible drawback of the continuous approach is that a re-
striction is placed on the allowable cost functions that can be used. This
restriction stems from the need for a suitable balance between terms in
the cost function and corresponding terms from the residual that are used
to eliminate variations in pressure or velocity gradients. For inviscid
flows, the allowable cost functions are those that involve only the pres-
sure. For viscous flows, an additional requirement is that terms from the
entire stress tensor, including both the pressure and viscous terms, must
be included. Although this limitation does not appear to occur in a dis-
crete adjoint approach, the full implications remain unclear.

The continuous adjoint approach requires more “up front” derivations
than the discrete approach before a computer implementation can be

0.5 I —— Initial _| . . .
,,,,,,,,,,,, 3 design cycles pursued. Also, each new cost function requires a certain level of effort to
,,,,,,,,, Target 7 not only arrive at the appropriate boundary conditions but to determine
1.0 - = whether boundary conditions can even be obtained. On the other hand,
3 B the continuous approach may provide insight into which cost functions
[} S S S — are controllable. For example, in the case of inviscid compressible flow,
6o 02 04 06 08 1.0 pressure is the only surviving term in the boundary flux upon application
x/c of the flow tangency condition. Therefore, it stands to reason that only
0.50 — T 7 ; cost functions that involve pressure can be contro_lled. In the discrete ad-
joint approach, new cost functions are more easily added because they
" — Initial 7 enter the problem only through the right-hand side of a linear system of
0050 T 3 design cycles | equations. After a subroutine has been written to evaluate a cost func-
""""" Target tion, it is usually a simple matter to obtain all the necessary derivatives

- g by differentiating the code directly using the chain rule. Furthermore,
this procedure does not require detailed knowledge of the equations and
can be accomplished by using a computational tool such as ADIFOR.

A technique is presented in this paper that is derived from a continu-
ous adjoint approach but appeals to the discrete approach where expedi-
-0.25 — ent. A discretization of the adjoint equations for viscous and inviscid
flow is presented that corresponds exactly to a discrete adjoint formula-
tion for first-order spatial accuracy. The discretization differs from the

¢, 0.00 k<

oo b 1] discrete adjoint approach for higher order schemes only in the artificial
00 02 04 06 08 10 dissipation terms. This approach is simple to implement and yields de-
x/c rivatives that are reasonably accurate in comparison with finite-differ-

ence calculations, even on coarse grids. Alternatively, the same scheme
could be obtained from a discrete adjoint point of view by appealing to
‘the continuous approach for making suitable approximations. The ad-
) ) ] joint approach is coupled with an optimization algorithm and is aug-
Discussion and Conclusions mented with a mesh movement strategy for restructuring the mesh in re-
The purpose of the present investigation has been to develop and aspense to surface displacements. The mesh movement technique is
lyze the continuous adjoint approach for obtaining sensitivity derivativeapplicable for meshes used in inviscid computations as well as for
on unstructured grids for the Euler and Navier-Stokes equations. Duringeshes with high aspect ratio triangles typically used in viscous compu-
the course of the study, several drawbacks have been uncovered. Tagons. The resulting approach has been used in several design exam-
most significant is the need for accurate second derivatives of the velgales.
ities required for computing the shape sensitivity derivatives for viscous
flows. In general, consistent second derivatives cannot be obtained with Acknowledgments

spatially second-order accurate schemes. This problem can be circumThe authors would like to thank Antony Jameson, Geojoe Kuruvila,

vented by mapping the domain to a fixed computational coordinate systanny Salas, Shlomo Ta’asan, and Jim Thomas, for many useful discus-
tem as is usually employed for structured grids. This approach, howevejjgns.

is restrictive in its generality and is at odds with the flexibility offered by
unstructured grids. The absence of a mapping is a fundamental differ-
ence between structured and unstructured grids. The requirement for
second derivatives can also be overcome by considering a higher order
discretization of the flow field, so that consistent second derivatives can
be obtained. However, this represents a significant level of effort be-

Figure 22. Initial and final pressure distribution for viscous flow
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